справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Репетиторы
Теория по алгебре >> Число е. Экспонента


Число е. Экспонента


В предыдущих пунктах графики показательной функции изображались в виде гладких линий (без изломов), к которым в каждой точке можно провести касательную. Но существование касательной к графику функции в точке с абсциссой х0 равносильно ее дифференцируемости в x0. Поэтому естественно предположить, что показательная функция дифференцируема во всех точках области определения.

графики функций, экспонента


Нарисуем несколько графиков функции у = аx для а, равного 2; 2,3; 3; 3,4 (рис. 1), и проведем к ним касательные в точке с абсциссой 0. Углы наклона этих касательных к оси абсцисс приблизительно равны 35, 40, 48 и 51° соответственно, т. е. с возрастанием а угловой коэффициент касательной к графику функции у=аx в точке М (0; 1) постепенно увеличивается от tg 35° до tg 51°. Представляется очевидным, что, увеличивая а от 2 до 3, мы найдем такое значение а, при котором угловой коэффициент соответствующей касательной равен 1 (т. е. угол наклона равен 45°). Вот точная формулировка этого предложения (мы принимаем его без доказательства):

Существует такое число, большее 2 и меньшее 3 (это число обозначают буквой е), что показательная функция у = еx в точке 0 имеет производную, равную 1, т. е.

сумма площадей при Δx →0. (1)


Замечание. Доказано, что число е иррационально и поэтому записывается в виде бесконечной десятичной непериодической дроби. С помощью электронных вычислительных машин найдено более двух тысяч десятичных знаков числа е. Первые знаки таковы: е = 2,718281828459045... .

Функцию еx часто называют экспонентой.
Теория вероятностей, математическая статистика | Математический форум| Для вебмастеров