СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Репетиторы
Гармонический осциллятор. Пружинный, физический и математический маятники


Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d2s/dt2 + ω02s = 0 или

гармонический осциллятор (1)

где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).

1. Пружинный маятник — это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины. Уравнение движения маятника имеет вид

уравнение движения пружинного маятника

или

уравнение движения пружинного маятника

Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω0t+φ) с циклической частотой

циклическая частота пружинного маятника (2)

и периодом

период пружинного маятника (3)

Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна

потенциальная энергия пружинного маятника

2. Физический маятник — это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

физический маятник

Рис.1


Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы

физический маятник момент возвращающей силы (4)

где J — момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, Fτ ≈ –mgsinα ≈ –mgα — возвращающая сила (знак минус указывает на то, что направления Fτ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как

дифференциальное уравнение движения физического маятника

или

дифференциальное уравнение движения физического маятника

Принимая

циклическая частота физического маятника (5)

получим уравнение

дифференциальное уравнение движения физического маятника

идентичное с (1), решение которого (1) найдем и запишем как:

решение дифференциального уравнения движения физического маятника (6)

Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 и периодом

период физического маятника (7)

где введена величина L=J/(ml) — приведенная длина физического маятника.

Точка О' на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем

приведенная длина физического маятника

т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' имеют свойство взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник — это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

момент инерции математического маятника (8)

где l — длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке — центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника

период математического маятника (9)

Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника — это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника.

Теория вероятностей, математическая статистика | Математический форум| Для вебмастеров