справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Репетиторы
Теория по алгебре >> Наибольшее и наименьшее значение функции.


Наибольшее и наименьшее значение функции.


Решение многих практических задач часто сводится к нахождению наибольшего и наименьшего значений непрерывной на отрезке функции. В курсах анализа доказывается теорема Вейерштрасса, утверждающая, что непрерывная на отрезке [а; b] функция f принимает на этом отрезке наибольшее и наименьшее значения, т. е. существуют точки отрезка [а; b] в которыхf принимает наибольшее и наименьшее на [а; b] значения.

Для случая, когда функция f не только непрерывна на отрезке [а; Ь] но имеет на этом отрезке лишь конечное число критических точек, укажем правило отыскания наибольшего и наименьшего значений f.

Наибольшее и наименьшее значение функции


Предположим сначала, что f не имеет на отрезке [а; b] критических точек. Тогда (Критические точки функции) она возрастает (рис. 1) или убывает (рис. 2) на этом отрезке, и, значит, наибольшее и наименьшее значения функции f на отрезке [а; b] — это значения в концах а и b.

Пусть теперь функция f имеет на отрезке [а; b] конечное число критических точек. Эти точки разбивают отрезок [а; Ь] на конечное число отрезков, внутри которых критических точек нет. Поэтому (см. Примеры применения производной к исследованию функций) наибольшее и наименьшее значения функции f на таких отрезках принимаются в их концах, т. е. в критических точках функции или в точках а и b.

Таким образом, чтобы найти наибольшее и наименьшее значения функции, имеющей на отрезке конечное число критических точек, нужно вычислить значения функции во всех критических точках и на концах отрезка, а затем из полученных чисел выбрать наибольшее и наименьшее.

Метод поиска наибольших и наименьших значений функции применим к решению разнообразных прикладных задач. При этом действуют по следующей схеме:

1) задача «переводится» на язык функций. Для этого выбирают удобный параметр х, через который интересующую нас величину выражают как функцию f (х);
2) средствами анализа ищется наибольшее или наименьшее значение этой функции на некотором промежутке;
3) выясняется, какой практический смысл (в терминах первоначальной задачи) имеет полученный (на языке функций) результат.

Вообще решение практических задач средствами математики, как правило, содержит три основных этапа:

1) формализацию (перевод исходной задачи на язык математики);
2) решение полученной математической задачи и
3) интерпретацию найденного решения («перевод» его с языка математики в терминах первоначальной задачи).

С этим общим методом (его называют методом математического моделирования) вы уже знакомы, по описанной схеме решались текстовые задачи в курсе алгебры.
Теория вероятностей, математическая статистика | Математический форум| Для вебмастеров