справочник телефонов города новосибирска как найти номер телефона человека из германии база данных телефонов ленинградской области тут найти человека по номеру телефона ярославль поиск человека по фамилии и справочник телефонов узнать как найти адрес человека по фамилии и имени справочник для мобильных телефонов база данных мобильных телефонов мурманска телефонная база санкт петербурга torrent поиск людей по сотовому телефонная база городов справочник телефонов светлогорска телефонная база чита ссылка справочник телефонов найти найти человека по бывшей фамилии ссылка как по номеру мобильного телефона найти владельца ссылка справочник телефонов приморского края телефонный справочник 2015 год москва телефонный поиск владельцев по номеру мобильного телефона тут телефонная база мобильных операторов украины узнать адрес частного лица по номеру телефона Блог Уфича
СПРАВОЧНИК ПО МАТЕМАТИКЕ, ШКОЛЬНАЯ МАТЕМАТИКА, ВЫСШАЯ МАТЕМАТИКА
Школьная математика
Высшая математика
Математика ЕГЭ
Физика
Теория по алгебре >> Наименьший положительный период тригонометрических функций.


Наименьший положительный период тригонометрических функций.


Докажем следующие утверждения:

1. Наименьший положительный период функций синус и косинус равен 2π

2. Наименьший положительный период функций тангенс и котангенс равен π

Ранее было показано, что число 2π является периодом функций y=cos(x) и y=sin(x). Остается доказать, что число, меньшее 2π, не может являться периодом этих функций.

Если Т - произвольный период косинуса, то cos(a+t)- cos(a) при любом a. Пусть a=0, следовательно cos(T)=cos(0)=1. Наименьшее положительоне число Т, для которого cos(x)=1, есть 2π

Пусть T - произвольный период синуса. Тогда sin(a+T)=sin(a) для любого a. Пусть a=π/2, получаем sin(T+π/2)=sin(π/2)=1. Но sin(x)=1 только при x=π/2+2πn, где n - целое. Следовательно T=2πn. Наименьшее положительное число вида 2πn есть 2π.

Если T - положительный период тангенса, то tg(T)=tg(0+T)=tg(0)=0. Так как на интервале (0;π) тангенс нулей не имеет, следовательно, T ≥ 2π. Ранее было доказано, что π - период функции тангенса, и, значит, π - наименьший положительный период тангенса. Аналогичное доказательство можно привести и для функции котангенса.

Обычно слова "наименьший положительный период" опускают и говорят просто "период".